Radar Object Classification Using Neural Networks
in Urban Automotive Scenarios

Atila Gabriel Ham
Communications Dept.
Politehnica University of Timisoara
Timisoara, Romania
atila.ham@student.upt.ro

Abstract—This paper proposes a method to solve the
problem of object classification for automotive radar systems.
This is done using neural networks and knowing attributes
about the objects such as their trajectory, acceleration, velocity,
velocity and acceleration standard deviation, object length and
width and other parameters related to object’s movement. The
method proposed is validated by experiments, obtaining in
process of validation an overall accuracy over 99%: for the
pedestrian class an accuracy of 99.88%, for the cyclist class an
accuracy of 99.23% and for the car class 99.82% accuracy.

Keywords—neural network, feature, radar, accuracy,
activation function, loss function, layer, velocity, acceleration,
standard deviation for acceleration.

I. INTRODUCTION

Autonomous driving requires that cars equipped with
radar sensors as well as other sensors, need to be aware of their
environment, but also be able to understand it. Thus, the task
of classification of moving object types that surrounds the car
is very important. Several papers address this topic. Classical
papers in target recognition identify radar data features and
use a machine learning classifier such as support vector
machines (SVM) [1][2] [3]. In [4] the authors proposed a deep
learning classifier, which uses radar reflections as input,
where each reflection is characterized by its range, radial
velocity, radar cross section, and azimuth angle. In [5] the
authors apply spiking neural networks (SNN) to automotive
radar object classification. In [6] the authors propose a method
based on LSTM (Long short-term memory) layers which
consist of several steps: data is translated into a common
coordinate system, grouped, and labelled before being
provided to the classification model.

The classical radar architecture begins with the antenna
that receives the signal, after that it is converted from analog
to digital. The signal processing block has the main objective
to output the raw targets. Next, the targets created will be sent
to the tracking module which will be outputting an object.
Here the main objective is to output the object as precisely as
possible and to classify it correctly (e.g. cyclist, motorbike,
pedestrian, car). The goal of this paper is to propose a method
to classify the moving objects for automotive radar systems,
in an urban scenario, by using neural networks. They will be
classified in three categories: pedestrian, cyclist and car. The
features used are object’s width, length, speed, acceleration,
standard deviation for speed, acceleration. Here all the data
(exception is the standard deviation for position on X and Y
axes) are expressed as the speed and velocity overground and
not as a relative velocity. It is important to take just those
features that will be able to discriminate between different
object classes, thus the velocity could be considered as a
discriminative factor. A pedestrian has a significant smaller
velocity compared to a car or a cyclist, a car has a non-uniform

979-8-3503-9086-5/24/$31.00 ©2024 IEEE

Corina Nafornita
Communications Dept.
Politehnica University of Timisoara
Timisoara, Romania
corina.nafornita@upt.ro

Vladimir Cristian Vesa
Forvia Hella Romania
Timisoara, Romania
vladimircristian.vesa@forvia.com

way of moving in an urban scenario due to traffic, with lots of
acceleration and deceleration, such that the velocity and
acceleration standard deviation will be higher than for a
pedestrian or a cyclist which will have a more uniform way of
moving in urban scenario.

The paper is organized as follows. In Section 2 we present
the proposed method, in Section 3 we give the implementation
details while in the last two sections we show the results as
well as conclusions and future directions.

II. DESIGN METHODOLOGY

The working flow diagram of the proposed method is
shown in Fig. 1.

The first step is to choose representative features that will
be extracted while running the application in Software in the
Loop (SIL). It’s important to have features that can make a
difference between different types of object classes. For
example, the length of an object can be defining, if we want to
distinguish between pedestrians and cars, because a pedestrian
will be significantly smaller than a car. The standard deviation
for acceleration can be a good indicator if an object is a
pedestrian or a car, because in an urban scenario, cars will
have a higher standard deviation of acceleration due to their
capacity to accelerate as well as decelerate faster than a
pedestrian. It also indicates that a car will have a wider range
of speed compared to a pedestrian or a cyclist.

Choose the

representative
features

Features
extraction (in
SIL)

Run input
analysis script

.

Run NN model

!

NN model
validation

Fig. 1. Workflow diagram.

The second step is to run certain traces, which can be
recorded in a controlled environment or can be free tracks,
recorded in public space, the latter being preferable, and the

extraction of these features from certain categories of vehicles.
At this point it’s important that these objects are real, clearly
visible, not obstructed by other objects or obstacles, that they
are not ghost objects. The obstacles could be for example ISO
poles.

The third step is to run the feature analysis script on the
dataset, obtained in the previous step, and rank it according to
its impact on the classification of different objects. The
purpose is to see which feature is more significant and will
have a larger impact in the final classification decision.

The fourth step is to run the neural network and see what
the output of that training will be. If the result is good enough
(accuracy over 99%), then we can stop the training and make
a step forward to the model validation. This step will consist
of taking another dataset and running the trained NN to
observe the results.

III. IMPLEMENTATION

In this section, we will present the implementation of the
method proposed.

A. Dataset

The dataset will play a major role in the process of
training the neural network and implicitly in the final
decision. It’s important to have a well-defined dataset, that
will have recordings with objects in different situations
scenarios in order to ensure a large diversity of data. Our
dataset contains measurements from real objects, and the
records were made when the host-vehicle was freely driving
in an urban scenario.

There were 70 features in the current dataset possible
candidates for training. The following features were selected
for training:

. velocity,

. velocity on the x and y axes,

. acceleration,

. acceleration on the x and y axes,

. standard deviation of velocity on the x and y axes,

. standard deviation of acceleration on the x and y
axes,

. correlation for velocity, acceleration and position.

As mentioned previously, velocity can be a differentiating
factor for distinct classes, so a pedestrian’s speed is lower
than that of a car or a cyclist, and a cyclist’s speed is lower
than that of a car. Acceleration is another crucial feature since
a pedestrian and a bike cannot accelerate as quickly as a car.

Another important feature is the size of the object, so
width and length are important attributes which can
differentiate between different objects. The estimated length
and width of the object can be affected by several factors,
such as the impossibility the see the full body of object when
it approaches the car from the lateral side and we will have
just a few detections only from a part of the object. This can
be considered as a physical limitation of the system.

The present dataset was created by running various traces
and comprises 18414 records. It was stored in CSV format.

B. Feature Analysis Script

A Python script will help in the process of deciding which
feature should be used from the existing 70 features. It is to be
noted that some features will be discarded because they

contain predefined data or irrelevant data for classification,
such as the object age or the number of radar cycles.

This script will read the dataset and will apply a scaler,
MinMaxScaler, on the existing values in order to have all the
data within a range from 0 to 1. This is done to avoid the neural
network to rely on features of high values and to obtain a
consistency in training.

The next step is to calculate the importance of the feature.
For each object class, the mean of each feature will be
calculated. After that, we compute the absolute value of the
difference between the mean obtained for the current class and
the mean obtained for the other classes (since there are three
classes, there are three potential combinations). Following this
step, we compute the mean of each feature across all three new
classes. After that, we scale all the columns after the mean to
get a mean column value ranging from 0 to 100. This will
represent the feature importance by mean value.

Another possibility is to compute the rank for every
feature. Rank is better to indicate the impact of every feature
in the final classification because it can show the feature
contribution, or how the feature will evolve, in classifying two
different objects. In Fig. 2, the results of running the analysis
script are shown. Classes are denoted as follows: 1 means
pedestrian, 3 means cyclist and 5 means car.

$Pecccncccscssssscsssnsnsnnnns Peccccncces FPeccccnnnns $Pecccccnnes Peccccccnes Peccnnas +
Feature ‘ 1-3 | 1-5 | 3-5 Mean | Ranks
$eccccscccccnsnsncncnnnnnnns $Peccccnnnns $eccccccnns $eccccccnns $eccccnnnes Peccnnns +
IS | 71,7637 | 150 | 78,2363 | 100 6
| length | 50,9817 | 140.684 | 89.7022 | 93.7892 | 8
| classhighest | 72,6151 | 120.86 | 48.2448 | 80.5733 9
| xyvelabs | 19,5813 | €5.8411 | 46.2598 | 43.894 | 20
| stdoevyawRate | 25.8782 | 51.8747 | 25,9965 | 34.5832 | 2
fusionInfo | 30,4214 | 42,1661 | 11,7446 | 28.1107 | 31|
| corryPosorientation | 8.074 | 29.086 | 37.16 %Nk | 4
width | 5.17907 | 142.046 | 136.867 | 94.6975 | 46 |
| corrxPosOrientation | 25,1651 | 5.78532 | 19.3798 | 16.7767 | 50 |
| corrXPosxvelocityAbs | 24,0552 | 16.8064 | 7.24877 | 16.0368 | 54
| existencerobability | 24,8604 | 29.9334 | 5.07303 | 19.9556 | 56
Ferrrnrnnrnnsnnnnrnnsnnrnnnn Fevennnnnnn Fervnnnnnnn Fevnnnnnnns Fevnnnnnnnn Fevennnn +

Fig. 2. Feature ordered by rank (last column). A feature is more important
if its mean has a higher value and respectively its rank has a lower value.

On the first column we have the features considered, on
columns two, three and four we have the absolute difference
of the mean values between two different classes, 1-3, 1-5, 3-
5, on the next column we have the mean, and on the last
column we show the rank. For column two, 1-3, we have the
absolute difference of mean value of class 1 (pedestrian) and
mean value of class 3 (cyclist). For width feature, the result is
a low value of 5.179065 which indicates that the width for
pedestrian and cyclist is quite similar and it’s not a definitory
factor to classify them. On the third column, 1-5, for width
feature, the value is 142.046278 which means that the width
in this case is a good indicator to separate pedestrian and car.
On the fourth column, 3-5, the value is a large one
(136.867213) and indicates that this feature can be useful to
separate the class car from the class cyclist. The mean column
is a mean value of all the three columns. Width is in second
place as the most important feature to distinguish between all
the classes. Finally, the last column is a rank computed based
on the mean value. This shows the feature importance and can
give us a clear view on the contribution of each feature in the
final decision on the classification process. For example, if we
consider length (position 2 in Fig. 2 — rank 8) compared to

width (position 8 in Fig. 2 — rank 44), we can observe that the
length is more important and can be considered as more
efficient to distinguish between different object classes
compared to width, since width is ranked lower in Fig. 2.

C. Neural Network

In the designing process of the neural network, the first
step is to find its hyperparameters. In order to do this, we
should implement a grid search and as the neural parameters
we will use batch size, epochs, dropout rate, optimizer,
learning rate and the hidden units. The best overall accuracy
0f 99.9674% was obtained using a batch size of 64, a dropout
rate of 0.1, 50 epochs, 10 neurons, a learning rate of 0.01, and
the RMSprop (Root Mean Square Propagation) optimizer.
RMSprop was chosen since it is ideal if the computational
effort needs to be small and the input data does not have a
large variation. After the best combination of those parameters
are known, we can start to use those results in our neural
network.

The neural network has an input layer of type flatten, a
hidden layer which consists of two dense layers, and an output
one of type dense. The hidden layers have 10 neurons each
and the output layer has the same number of object classes
with 3 neurons. For hidden layers the activation function ReLu
was used, and for the output layer SoftMax function was used.
Also, the sparse categorical crossentropy was used as a loss
function.

In order to balance the dataset used for training, Synthetic
Minority Over-sampling approach (SMOTE) was used to
generate synthetic data, and to ensure a consistency between
different runs, a seed was set. SMOTE solves the issue of class
imbalance in our classification task [7]. Class imbalance
occurs when one class in the dataset (the minority class) has
significantly fewer occurrences than another (the majority
class).

For the dataset partitioning it was used 60% for training
and 20% for validation and the rest of 20% was used for
testing. The results will be considered valid only if the
accuracy is higher than 99% for the validation part. If the
accuracy for each class is lower than 99%, we will restart the
training process. Also, the early stopping method was used in
order to reduce the probability of overfitting the neural
network, with a patience of 5 and the monitoring feature
val_accuracy. ReduceLROnPlateau was also used in order to
reduce the learning rate when we are close to a plateau on the
learning curve, in this way avoiding the possibility of
overshooting the model. For this a factor of 0.1 was set and a
patience of 3 was chosen.

The features for network training are:

* corrXAccelerationAbsY AccelerationAbs,
e corrXPosXAccelerationAbs,

* corrXPosXVelocityAbs,

e corrXPosYPos,

» corrXVelocityAbsXAccelerationAbs,
* corrXVelocityAbsY VelocityAbs,

e corrYPosYAccelerationAbs,

e corrYPosYVelocityAbs,

e corrY VelocityAbsY AccelerationAbs,
* height,

» stdDevHeight,

+ stdDevLength,

* stdDevWidth,

» stdDevXAccelerationAbs,
e stdDevXPos,

+ stdDevXVelocityAbs,

e stdDevYAccelerationAbs,
e stdDevYPos,

+ stdDevY VelocityAbs,

* XAccelerationAbs,

* xVelocityAbs,

* yAccelerationAbs,

* yVelocityAbs,

* length,
e width,
* XxyAccAbs,
* XxyVelAbs,

* stdDevxyAccAbs,
» stdDevxyVelAbs.

Those features are related to the object size and
movement; they are given as absolute overground sizes,
without considering the relative ones, which have as reference
point the ego car. The data is split into features and labels. We
apply scaling for the features, using the MinMaxScaler which
is more suitable for data that does not have a normal
distribution. The data is also shuffled, to ensure a random
sequence for each training run, avoiding any underlying bias
or order in the data.

IV. EXPERIMENTAL RESULTS

The first step for the experimental results is to run the
script for feature analysis. Although the script will use all of
the characteristics in the prioritizing process, only those that
will provide information on the object motion and dimension
will be used.

Results for feature classification script are shown in Fig.
2. After we have a clear view of the features and their impact
on training and validation processes, we will need to start the
training process. For this the dataset will be divided in 3 parts,
60% of dataset will be used for training, 20% for validation
and 20% for test. The validation process will be finished only
when we will obtain an accuracy for each label over 99%,
otherwise the training process will be repeated until we will
reach at least 99% accuracy.

Fig. 3 shows the result after the training process (blue
color) as well as validation process (orange color). In the
validation process, we obtain for label 1 (pedestrian) an
accuracy of 99.88%, for label 3 (cyclist) an accuracy of
99.23% and for label 5 (car) 99.82% accuracy. The highest
score was obtained for pedestrian class, 99.82% of the
pedestrians are correctly classified in the validation part of the
model. To achieve this result, the training process ran four
times, since in the first run the pedestrian class accuracy was
98.86%, below the required threshold of 99% for each label.
In the second run the cyclist class accuracy was 98.93% and
in third run the pedestrian class accuracy was 98.86%.

It is to be noted that there is a gap between the training and
validation curve, due to the dropout rate of 1 neuron in each
hidden layer. Using a dropout rate in the training process will
give the neural network the ability to generalize the input
values as long as the input values do not differ too much from
the training values used and will make it more robust.

Model accuracy

1.00 A

0.95 A

0.90 A

o

©

«
L

Accuracy
o
(o2}
o

0.75 1

B: 99.23%

b: 99.82%

1: 99.88%

—— Train
~—— Validation

0 5 10 15

20 25 30 35 40

Epoch

Fig. 3. Training and validation results.

epoch_accuracy

Start Value

,,,,,,,,,,,,,,,

® ® o 20 000
E
¥

End Value

“x

AValue A% Start Step End Step

Fig. 4. Evolution of accuracy.

Fig. 4 shows the evolution of accuracy as a function of
number of epochs. We can see that four training processes
(dark blue color) and two validation processes (light blue
color) took place to achieve satisfactory results. In all of the
first three running the learning process was stopped due to
reaching the plateau in the curve of learning and the possibility
to overshoot the learning process.

Next step is to use the remaining 20% of dataset in order
to see how the model will perform on the new data.

Results are shown in Fig. 5. For label 5 (car) we obtained
an accuracy of 99.86%, for label number 3 (cyclist) we obtain
an accuracy of 99.36% and for label number 1 (pedestrian) we
obtain an accuracy of 99.58%.

The overall results are satisfactory and demonstrate the
idea that if we know data about the urban travel mode of
different classes of objects, we can predict the class to which
they belong.

Accuracy for each label on test data:
3: 99.36%
5: 99.86%
1: 99.58%

Confusion Matrix:

[[1404 9 9]
[2 1411 0]
[3 3 1407]]

Fig. 5. Test for NN.

V. CONCLUSIONS

The aim of this paper was to extend the knowledge in the
field of automotive radar by using neural networks to classify
different types of objects in several categories: pedestrian,
cyclist and car. The contribution of this paper is to consider
automotive object classification only by knowing their width

and length and data about their way of moving, such as:
velocity, acceleration, standard deviation for position on X
axes and Y axes and so on. It starts from the premise that cars
in urban scenario will have a higher velocity and a nonlinear
way of movement compared with the pedestrian or cyclist
which tend to move more linear. We have verified that the
method proposed is successful by presenting experiments on
a vast database and the neural network was capable of
distinguishing between different types of objects in an urban
scenario. We obtained for the pedestrian class an accuracy of
99.88%, for the cyclist class an accuracy of 99.23% and for
the car class 99.82% accuracy on the validation process.

Once the test part begins, it was shown that the accuracy
will remain quite stable and will not have a significant drop.
The limitation of the current implementation is that once the
scenario will be changed and we will consider an extra urban
scenario the accuracy in classification will drop. As a future
improvement we should also consider other features for
classification, such as: signal-to-noise ratio (SNR), radar
cross-section (RCS) and to start the investigation from the
targets associated with the object and from there to extract any
correlation between detection and the object class.

(1

(2]

(3]

(4]

(3]
(6]

(7]

ACKNOWLEDGMENT
The authors thank Forvia-Hella for the support.

REFERENCES

S. Heuel, and H. Rohling, “Two-stage pedestrian classification in
automotive radar systems,” in 2011 12th International Radar
Symposium (IRS), Leipzig, 477-484.2011.

S. Heuel, and H. Rohling, “Pedestrian classification in automotive
radar systems,” in 2012 13th International Radar Symposium, Warsaw,
39-44,2012.

S. Lee, Y.-J. Yoon, J.-E. Lee, and S.-C. Kim, “Human—vehicle
classification using feature-based SVM in 77-GHz automotive FMCW
radar”, IET Radar Sonar Navig. 11, 1589-1596, 2017, doi: 10.1049/iet-
rsn.2017.0126.

M. Ulrich, C. Gléaser and F. Timm, "DeepReflecs: Deep Learning for
Automotive Object Classification with Radar Reflections," 2021 IEEE
Radar Conference (RadarConf21), Atlanta, GA, USA, 2021, pp. 1-6.

B. Vogginger et al, “Automotive radar processing with spiking neural
networks: concepts and challenges Frontiers in Neuroscience,” 2022.

Nicolas Scheiner, Nils Appenrodt, Jiirgen Dickmann, Bernhard Sick,
”Radar-based Road User Classification and Novelty Detection with
Recurrent Neural Network Ensembles”, May 2019.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip
Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling
Technique”, Journal of Artificial Intelligence Research, Volume 16,
Issue 1, Pages 321 — 357, 2002

