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Abstract—This paper proposes a method to solve the 

problem of object classification for automotive radar systems. 

This is done using neural networks and knowing attributes 

about the objects such as their trajectory, acceleration, velocity, 

velocity and acceleration standard deviation, object length and 

width and other parameters related to object’s movement. The 

method proposed is validated by experiments, obtaining in 

process of validation an overall accuracy over 99%: for the 

pedestrian class an accuracy of 99.88%, for the cyclist class an 

accuracy of 99.23% and for the car class 99.82% accuracy. 

Keywords—neural network, feature, radar, accuracy, 

activation function, loss function, layer, velocity, acceleration, 

standard deviation for acceleration. 

I. INTRODUCTION 

Autonomous driving requires that cars equipped with 
radar sensors as well as other sensors, need to be aware of their 
environment, but also be able to understand it. Thus, the task 
of classification of moving object types that surrounds the car 
is very important. Several papers address this topic. Classical 
papers in target recognition identify radar data features and 
use a machine learning classifier such as support vector 
machines (SVM) [1] [2] [3]. In [4] the authors proposed a deep 
learning classifier, which uses radar reflections as input, 
where each reflection is characterized by its range, radial 
velocity, radar cross section, and azimuth angle. In [5] the 
authors apply spiking neural networks (SNN) to automotive 
radar object classification. In [6] the authors propose a method 
based on LSTM (Long short-term memory) layers which 
consist of several steps: data is translated into a common 
coordinate system, grouped, and labelled before being 
provided to the classification model. 

The classical radar architecture begins with the antenna 
that receives the signal, after that it is converted from analog 
to digital. The signal processing block has the main objective 
to output the raw targets. Next, the targets created will be sent 
to the tracking module which will be outputting an object. 
Here the main objective is to output the object as precisely as 
possible and to classify it correctly (e.g. cyclist, motorbike, 
pedestrian, car). The goal of this paper is to propose a method 
to classify the moving objects for automotive radar systems, 
in an urban scenario, by using neural networks. They will be 
classified in three categories: pedestrian, cyclist and car. The 
features used are object’s width, length, speed, acceleration, 
standard deviation for speed, acceleration. Here all the data 
(exception is the standard deviation for position on X and Y 
axes) are expressed as the speed and velocity overground and 
not as a relative velocity. It is important to take just those 
features that will be able to discriminate between different 
object classes, thus the velocity could be considered as a 
discriminative factor. A pedestrian has a significant smaller 
velocity compared to a car or a cyclist, a car has a non-uniform 

way of moving in an urban scenario due to traffic, with lots of 
acceleration and deceleration, such that the velocity and 
acceleration standard deviation will be higher than for a 
pedestrian or a cyclist which will have a more uniform way of 
moving in urban scenario. 

The paper is organized as follows. In Section 2 we present 
the proposed method, in Section 3 we give the implementation 
details while in the last two sections we show the results as 
well as conclusions and future directions. 

II. DESIGN METHODOLOGY 

The working flow diagram of the proposed method is 
shown in Fig. 1. 

The first step is to choose representative features that will 
be extracted while running the application in Software in the 
Loop (SIL). It’s important to have features that can make a 
difference between different types of object classes. For 
example, the length of an object can be defining, if we want to 
distinguish between pedestrians and cars, because a pedestrian 
will be significantly smaller than a car. The standard deviation 
for acceleration can be a good indicator if an object is a 
pedestrian or a car, because in an urban scenario, cars will 
have a higher standard deviation of acceleration due to their 
capacity to accelerate as well as decelerate faster than a 
pedestrian. It also indicates that a car will have a wider range 
of speed compared to a pedestrian or a cyclist. 

 

Fig. 1. Workflow diagram. 

The second step is to run certain traces, which can be 
recorded in a controlled environment or can be free tracks, 
recorded in public space, the latter being preferable, and the 
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extraction of these features from certain categories of vehicles. 
At this point it’s important that these objects are real, clearly 
visible, not obstructed by other objects or obstacles, that they 
are not ghost objects. The obstacles could be for example ISO 
poles. 

The third step is to run the feature analysis script on the 
dataset, obtained in the previous step, and rank it according to 
its impact on the classification of different objects. The 
purpose is to see which feature is more significant and will 
have a larger impact in the final classification decision. 

The fourth step is to run the neural network and see what 
the output of that training will be. If the result is good enough 
(accuracy over 99%), then we can stop the training and make 
a step forward to the model validation. This step will consist 
of taking another dataset and running the trained NN to 
observe the results. 

III. IMPLEMENTATION 

In this section, we will present the implementation of the 
method proposed. 

A. Dataset 

The dataset will play a major role in the process of 
training the neural network and implicitly in the final 
decision. It’s important to have a well-defined dataset, that 
will have recordings with objects in different situations 
scenarios in order to ensure a large diversity of data. Our 
dataset contains measurements from real objects, and the 
records were made when the host-vehicle was freely driving 
in an urban scenario.  

There were 70 features in the current dataset possible 
candidates for training. The following features were selected 
for training: 

• velocity,  
• velocity on the x and y axes, 
• acceleration,  
• acceleration on the x and y axes,  
• standard deviation of velocity on the x and y axes,  
• standard deviation of acceleration on the x and y 

axes,  
• correlation for velocity, acceleration and position. 
As mentioned previously, velocity can be a differentiating 

factor for distinct classes, so a pedestrian’s speed is lower 
than that of a car or a cyclist, and a cyclist’s speed is lower 
than that of a car. Acceleration is another crucial feature since 
a pedestrian and a bike cannot accelerate as quickly as a car. 

Another important feature is the size of the object, so 
width and length are important attributes which can 
differentiate between different objects. The estimated length 
and width of the object can be affected by several factors, 
such as the impossibility the see the full body of object when 
it approaches the car from the lateral side and we will have 
just a few detections only from a part of the object. This can 
be considered as a physical limitation of the system.  

The present dataset was created by running various traces 
and comprises 18414 records. It was stored in CSV format. 

B. Feature Analysis Script 

A Python script will help in the process of deciding which 
feature should be used from the existing 70 features. It is to be 
noted that some features will be discarded because they 

contain predefined data or irrelevant data for classification, 
such as the object age or the number of radar cycles. 

This script will read the dataset and will apply a scaler, 
MinMaxScaler, on the existing values in order to have all the 
data within a range from 0 to 1. This is done to avoid the neural 
network to rely on features of high values and to obtain a 
consistency in training. 

The next step is to calculate the importance of the feature. 
For each object class, the mean of each feature will be 
calculated. After that, we compute the absolute value of the 
difference between the mean obtained for the current class and 
the mean obtained for the other classes (since there are three 
classes, there are three potential combinations). Following this 
step, we compute the mean of each feature across all three new 
classes. After that, we scale all the columns after the mean to 
get a mean column value ranging from 0 to 100. This will 
represent the feature importance by mean value. 

Another possibility is to compute the rank for every 
feature. Rank is better to indicate the impact of every feature 
in the final classification because it can show the feature 
contribution, or how the feature will evolve, in classifying two 
different objects. In Fig. 2, the results of running the analysis 
script are shown. Classes are denoted as follows: 1 means 
pedestrian, 3 means cyclist and 5 means car.  

 

Fig. 2. Feature ordered by rank (last column). A feature is more important 
if its mean has a higher value and respectively its rank has a lower value. 

On the first column we have the features considered, on 
columns two, three and four we have the absolute difference 
of the mean values between two different classes, 1-3, 1-5, 3-
5, on the next column we have the mean, and on the last 
column we show the rank. For column two, 1-3, we have the 
absolute difference of mean value of class 1 (pedestrian) and 
mean value of class 3 (cyclist). For width feature, the result is 
a low value of 5.179065 which indicates that the width for 
pedestrian and cyclist is quite similar and it’s not a definitory 
factor to classify them. On the third column, 1-5, for width 
feature, the value is 142.046278 which means that the width 
in this case is a good indicator to separate pedestrian and car. 
On the fourth column, 3-5, the value is a large one 
(136.867213) and indicates that this feature can be useful to 
separate the class car from the class cyclist. The mean column 
is a mean value of all the three columns. Width is in second 
place as the most important feature to distinguish between all 
the classes. Finally, the last column is a rank computed based 
on the mean value. This shows the feature importance and can 
give us a clear view on the contribution of each feature in the 
final decision on the classification process. For example, if we 
consider length (position 2 in Fig. 2 – rank 8) compared to 
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width (position 8 in Fig. 2 – rank 44), we can observe that the 
length is more important and can be considered as more 
efficient to distinguish between different object classes 
compared to width, since width is ranked lower in Fig. 2. 

C. Neural Network 

In the designing process of the neural network, the first 
step is to find its hyperparameters. In order to do this, we 
should implement a grid search and as the neural parameters 
we will use batch size, epochs, dropout rate, optimizer, 
learning rate and the hidden units. The best overall accuracy 
of 99.9674% was obtained using a batch size of 64, a dropout 
rate of 0.1, 50 epochs, 10 neurons, a learning rate of 0.01, and 
the RMSprop (Root Mean Square Propagation) optimizer. 
RMSprop was chosen since it is ideal if the computational 
effort needs to be small and the input data does not have a 
large variation. After the best combination of those parameters 
are known, we can start to use those results in our neural 
network. 

The neural network has an input layer of type flatten, a 
hidden layer which consists of two dense layers, and an output 
one of type dense. The hidden layers have 10 neurons each 
and the output layer has the same number of object classes  
with 3 neurons. For hidden layers the activation function ReLu 
was used, and for the output layer SoftMax function was used. 
Also, the sparse categorical crossentropy was used as a loss 
function. 

In order to balance the dataset used for training, Synthetic 
Minority Over-sampling approach (SMOTE) was used to 
generate synthetic data, and to ensure a consistency between 
different runs, a seed was set. SMOTE solves the issue of class 
imbalance in our classification task [7]. Class imbalance 
occurs when one class in the dataset (the minority class) has 
significantly fewer occurrences than another (the majority 
class). 

For the dataset partitioning it was used 60% for training 
and 20% for validation and the rest of 20% was used for 
testing. The results will be considered valid only if the 
accuracy is higher than 99% for the validation part. If the 
accuracy for each class is lower than 99%, we will restart the 
training process. Also, the early stopping method was used in 
order to reduce the probability of overfitting the neural 
network, with a patience of 5 and the monitoring feature 
val_accuracy. ReduceLROnPlateau was also used in order to 
reduce the learning rate when we are close to a plateau on the 
learning curve, in this way avoiding the possibility of 
overshooting the model. For this a factor of 0.1 was set and a 
patience of 3 was chosen. 

The features for network training are:  

• corrXAccelerationAbsYAccelerationAbs, 
• corrXPosXAccelerationAbs, 
• corrXPosXVelocityAbs, 
• corrXPosYPos, 
• corrXVelocityAbsXAccelerationAbs, 
• corrXVelocityAbsYVelocityAbs, 
• corrYPosYAccelerationAbs, 
• corrYPosYVelocityAbs, 
• corrYVelocityAbsYAccelerationAbs, 
• height, 
• stdDevHeight, 
• stdDevLength, 

• stdDevWidth, 
• stdDevXAccelerationAbs, 
• stdDevXPos, 
• stdDevXVelocityAbs, 
• stdDevYAccelerationAbs, 
• stdDevYPos, 
• stdDevYVelocityAbs, 
• xAccelerationAbs, 
• xVelocityAbs, 
• yAccelerationAbs, 
• yVelocityAbs, 
• length, 
• width, 
• xyAccAbs, 
• xyVelAbs, 
• stdDevxyAccAbs, 
• stdDevxyVelAbs. 

 
Those features are related to the object size and 

movement; they are given as absolute overground sizes, 
without considering the relative ones, which have as reference 
point the ego car. The data is split into features and labels. We 
apply scaling for the features, using the MinMaxScaler which 
is more suitable for data that does not have a normal 
distribution. The data is also shuffled, to ensure a random 
sequence for each training run, avoiding any underlying bias 
or order in the data. 

IV. EXPERIMENTAL RESULTS 

The first step for the experimental results is to run the 
script for feature analysis. Although the script will use all of 
the characteristics in the prioritizing process, only those that 
will provide information on the object motion and dimension 
will be used.  

Results for feature classification script are shown in Fig. 
2. After we have a clear view of the features and their impact 
on training and validation processes, we will need to start the 
training process. For this the dataset will be divided in 3 parts, 
60% of dataset will be used for training, 20% for validation 
and 20% for test. The validation process will be finished only 
when we will obtain an accuracy for each label over 99%, 
otherwise the training process will be repeated until we will 
reach at least 99% accuracy.  

Fig. 3 shows the result after the training process (blue 
color) as well as validation process (orange color). In the 
validation process, we obtain for label 1 (pedestrian) an 
accuracy of 99.88%, for label 3 (cyclist) an accuracy of 
99.23% and for label 5 (car) 99.82% accuracy. The highest 
score was obtained for pedestrian class, 99.82% of the 
pedestrians are correctly classified in the validation part of the 
model. To achieve this result, the training process ran four 
times, since in the first run the pedestrian class accuracy was 
98.86%, below the required threshold of 99% for each label. 
In the second run the cyclist class accuracy was 98.93% and 
in third run the pedestrian class accuracy was 98.86%. 

 It is to be noted that there is a gap between the training and 
validation curve, due to the dropout rate of 1 neuron in each 
hidden layer. Using a dropout rate in the training process will 
give the neural network the ability to generalize the input 
values as long as the input values do not differ too much from 
the training values used and will make it more robust.  
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Fig. 3. Training and validation results. 

 

Fig. 4. Evolution of accuracy. 

 Fig. 4 shows the evolution of accuracy as a function of 
number of epochs. We can see that four training processes 
(dark blue color) and two validation processes (light blue 
color) took place to achieve satisfactory results. In all of the 
first three running the learning process was stopped due to 
reaching the plateau in the curve of learning and the possibility 
to overshoot the learning process. 

 Next step is to use the remaining 20% of dataset in order 
to see how the model will perform on the new data.  

 Results are shown in Fig. 5.  For label 5 (car) we obtained 
an accuracy of 99.86%, for label number 3 (cyclist) we obtain 
an accuracy of 99.36% and for label number 1 (pedestrian) we 
obtain an accuracy of 99.58%.  

 The overall results are satisfactory and demonstrate the 
idea that if we know data about the urban travel mode of 
different classes of objects, we can predict the class to which 
they belong. 

 

Fig. 5. Test for NN. 

V. CONCLUSIONS 

 The aim of this paper was to extend the knowledge in the 
field of automotive radar by using neural networks to classify 
different types of objects in several categories: pedestrian, 
cyclist and car. The contribution of this paper is to consider 
automotive object classification only by knowing their width 
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and length and data about their way of moving, such as: 
velocity, acceleration, standard deviation for position on X 
axes and Y axes and so on. It starts from the premise that cars 
in urban scenario will have a higher velocity and a nonlinear 
way of movement compared with the pedestrian or cyclist 
which tend to move more linear. We have verified that the 
method proposed is successful by presenting experiments on 
a vast database and the neural network was capable of 
distinguishing between different types of objects in an urban 
scenario. We obtained for the pedestrian class an accuracy of 
99.88%, for the cyclist class an accuracy of 99.23% and for 
the car class 99.82% accuracy on the validation process. 

 Once the test part begins, it was shown that the accuracy 
will remain quite stable and will not have a significant drop. 
The limitation of the current implementation is that once the 
scenario will be changed and we will consider an extra urban 
scenario the accuracy in classification will drop. As a future 
improvement we should also consider other features for 
classification, such as: signal-to-noise ratio (SNR), radar 
cross-section (RCS) and to start the investigation from the 
targets associated with the object and from there to extract any 
correlation between detection and the object class. 
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