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Abstract—Radar is one of the fundamental sensors used in 

ADAS (Advanced Driver Assist System). Automotive related 

functionalities like ACC (Adaptive Cruise Control), LCA (Lane 

Change Alert), CTA (Cross Traffic Alert) or TA (Turn Assist) 

require very precise detection and ranging of traffic and 

environment, otherwise, the whole ADAS performance can be 

degraded. Vehicle integration and mounting tolerances will 

influence the angular performance of the radar sensor, due to 

its installation behind a bumper or a cover and even due to aging 

or exposure to accidents or vehicle vibration. In this paper, we 

introduce a real time autocalibration method of an azimuth 

angular interval to correct the environmental influences on the 

sensor. 
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I. INTRODUCTION  

In the past decades, the need for driver assistance systems 
in the automotive industry has increased steadily. The main 
reason for this is the need for increasing the driver’s comfort 
and safety, with functionalities that play a supporting role in 
helping the driver and thus, decreasing the number of 
accidents in public road traffic [1]. 

That means that an ADAS must contain several systems 
that would intervene in case of potentially dangerous 
situations to prevent them as soon as they happen. One such 
system used is the radar, that has active functionalities like 
LCA, CTA, or TA, that perform traffic monitoring and assess 
potential danger of vehicles, releasing a warning for the driver. 
These functionalities require precise detection and ranging of 
the environment and traffic. For this purpose, automotive 
radar systems detect objects and obstacles, known as targets, 
with corresponding range, azimuth-elevation angles, and 
velocity. However, the radar systems are usually installed 
behind painted bumpers or covers, meaning that factors like 
coating properties, shape, material and paint will lead to a 
performance degradation in the angle measurement. The 
measurements are affected by errors from reflections, 
diffraction, refraction, and multipath propagation of the signal 
that depend on the angle of the incident wave.  These 
distortions will be referred as local offsets throughout this 
paper.  

There are different methods for compensating such offsets, 
such as optimizing the vehicle integration by electromagnetic 
simulations and pre-evaluation of functional behavior, leading 
to the creation of a specific angle correction characteristic.  

These calibration methods have been already studied very 
well in the literature [2]. To compensate for local angular 
distortions in the azimuth, there are various offline methods 
based either on simulations that include knowledge of bumper 
properties, or on methods that require the reception of a signal 

from a target with a known angle [1]. For automotive radars, 
these types of offline calibration present great difficulties due 
to the need to calibrate the sensors after mounting them behind 
the bumper, as well as the high cost of allocating a special 
space for setup and preparing the plant personnel. Due to their 
effort, these methods can be used only for an initial calibration 
of a radar sensor.  

The correction method should ideally be automatic and 
adaptive, considering both radar wear and the changes of the 
bumper properties over the years. A self-calibration method 
with a target with unknown position allows an initial 
calibration as well as a continuous adjustment during the 
lifetime of the sensor. Harter et al. developed a self-calibration 
model for a MIMO radar [3], but it’s difficult to adapt to a 
SIMO radar. Suzuki et al. [4] proposed a feasible method for 
different types of radars, which generates a correction table by 
performing a regression of the bias error function. A 
disadvantage of this solution is the incorporation of the 
Gaussian process regression with Monte Carlo Markov Chain 
(MCMC) method in performing the regression of the error 
function, due to the intensive computing power required by 
the stochastic sampling involved. Another method of online 
self-correction of local angular distortions in azimuth, 
proposed by Kostka el al. [5] consists in estimating the real 
trajectory (reference) of a radar object that performs an 
overtaking maneuver, relative to the ego vehicle. An angle 
measurement error between the measured angle and the actual 
angle is determined by evaluating the movement pattern of the 
object. However, a disadvantage of this solution is represented 
by the scarcity of the required events that can trigger the 
correction calculation process.  

The requirement is to perform a continuously adjustable 
and tunable azimuth automatic calibration process which can 
adapt on any vehicle, can accurately compensate azimuth 
local offsets in a robust manner and can provide statistical data 
that characterize the resulting angle correction characteristic 
in a global manner. 

The main contributions  of this paper are as follows: 

• A fully functional model that can adapt the radar 
system to the vehicle integration. 

• An algorithm that provides continuous corrections 
based on stationary targets and references, followed by 
the implementation of regression model and 
smoothing algorithm that ensure the stability and 
accuracy of the model. 

• The developed methodology is demonstrated by 
simulations, based on vehicle test drives in order to 
illustrate the effect on the system performance. 

 



 

 

Fig. 1. Local offset compensation procedure. 

 

The remainder of this paper is organized as follows: in 

Section II we introduce the general automatic calibration 

model. In Section III we analyze the automatic calibration 

process from the calculation of the reference angle based on 

stationary targets to the validation model and the KPIs (Key 

Performance Indicators) used. In Section IV we present the 

results obtained by simulating the presented algorithm using 

data gathered from a real test drive, provided by Hella KGaA 

Hueck & Co, followed by the conclusions in Section V. 

II. THE METHODOLOGY OF THE AUTOMATIC 

CALIBRATION MODEL 

The generation procedure of the azimuth angle correction 

characteristic is described in Fig.1. The System Angle 

Correction Characteristic (SACC) generator block receives 

as inputs the raw target list from the raw radar digital signal 

processing block (RRDSP) and a stationary structure 

consisting of the lateral position of the road edge, that will be 

used as the basis for the stationary reference calculation. 

This raw target list, created in the current radar cycle k, 

that contains stationary targets, will be subjected to certain 

suitability criteria and the suitable targets will be used into 

the Azimuth Angle Correction calculation block. 

The internal update of the angle correction characteristic 

is a process that takes multiple radar cycles to complete and 

will generate a plausible Internal Angle Correction 

Characteristic (IACC) using a combination of least squares 

regression and exponential moving average. Every correction 

of the IACC will then undergo a smoothing process, 

generating a smoothed angle characteristic that will be the 

basis for the SACC calculation. The new SACC will then be 

used by RRDSP in cycle k+1. 

Besides the update of the SACC, the validation block also 

generates a series of KPIs that allow us to determine a general 

state of the current SACC. 

 

III. CORRECTION CALCULATION 

To obtain a stable model, the processing flow requires 

activation conditions such as a straight drive and minimum 

ego velocity that will ensure a good target detection. 

The stationary reference estimation along with the 

azimuth angle correction calculation and the update of IACC 

are described in Section III-A. The validation process is 

introduced in Section III-B and in Section III-C we define the 

KPIs based on the validation results. 

A. Reference angle and update angle calculation 

The SACC generator receives stationary targets, and the 

measured azimuth angle of each target �̃� is a result of the 

azimuth angle of arrival 𝛼, affected by its systematic local 

offset ∆𝛼𝑠𝑦𝑠(𝛼) and Gaussian noise 𝜂𝛼, as shown in (1): 

 

 �̃�  = 𝛼 + ∆𝛼𝑠𝑦𝑠(𝛼) +  𝜂𝛼                      (1) 

 

Thus, the true value of the azimuth angle is described in (2) 

in the following way: 

             𝛼 = �̃�  − ∆𝛼𝑠𝑦𝑠(𝛼) −  𝜂𝛼          (2) 

 

The proposed method for providing an estimator for the 

azimuth angle 𝛼 is presented in Fig. 2. 

 

 

Fig. 2. Estimator of the azimuth angle of a target. 
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The principle behind our proposal of obtaining an 
estimator of the azimuth angle 𝛼  of a stationary target is that 
if the target is close to a stationary reference structure, like 
the edge of the road (e.g. metal guardrail), then that target is 
a reflection from that structure and a shift in its lateral 
position is needed in order to obtain an accurate position. A 

stationary target with measured range �̃�  and measured 
azimuth angle �̃�  that belongs to such reference Y has an 
estimated azimuth angle of: 

      �̂� = 𝛼 + 𝜂𝛼 = arcsin (
𝑌

�̃�
)                   (3) 

However, it is possible that the value of the road edge 
lateral position is not stable from one radar cycle to another 
and that could cause wrong target assignments to the road 
edge, resulting in a poor estimation of the azimuth angle. The 
solution we propose includes modeling 𝑌  as a Gaussian 
random variable and a pre-calculation of the mean reference 
position over a number of 𝑁𝑟𝑒𝑓  radar cycles, based on the 

lateral position of the edge of the road, followed by a 
validation process that includes checking for the variance of 
the estimator. If the validation passes, over a maximum of 
𝑀𝑟𝑒𝑓  radar cycles or until the variance condition is no longer 

fulfilled, the reference will still be updated, and suitable raw 
targets will be used for updating the IACC. Equation (4) 
describes the reference estimation process: 

    �̂�𝑘 =  
1

𝑘
∑ 𝑦𝑖
𝑘
𝑖 ,                            (4) 

where 𝑦𝑖  is the precalculated reference, k is the current 
reference update cycle, with 𝑁𝑟𝑒𝑓 < 𝑘 ≤ (𝑁𝑟𝑒𝑓 +𝑀𝑟𝑒𝑓) .

 Thus, (3) becomes: 

   �̂� = 𝛼 + 𝜂𝛼 =

{
 
 

 
 arcsin (

�̂�𝑘

�̃�
) , 𝑓𝑜𝑟 𝛼 ∊ [−

 𝜋

2
,
𝜋

2
]

π −  arcsin (
�̂�𝑘

�̃�
) ,  𝑓𝑜𝑟 𝛼 ∊ (

 𝜋

2
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−π −  arcsin (
�̂�𝑘

�̃�
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2
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                   (5) 

The estimated difference angle is: 

   𝛼𝑑𝑖𝑓𝑓 = �̂� − (�̃� + 𝑆𝐴𝐶𝐶(�̃�))        (6) 

where  (�̃� + 𝑆𝐴𝐶𝐶(�̃�))  represents the measured azimuth 

angle of the target, corrected with the latest azimuth 

correction provided by the SACC. In this way, the assignment 

angle is: 
   𝛼𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = �̂� − 𝑆𝐴𝐶𝐶(�̃�)                 (7) 

In (6) and (7) we observe that the process of updating the 
IACC is based on the latest existing values of SACC in order 
to have a continuous correction updating process, in which 
the purpose of the IACC is to fine tune the SACC. 

The pair consisting of 𝛼𝑑𝑖𝑓𝑓 and 𝛼𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 will be sent 

to the IACC update block. The IACC and SACC have a 
structure similar to a table, as shown in Fig. 3. They have a 
starting angle 𝛼𝑠𝑡𝑎𝑟𝑡 , a number of points and a minimum 
difference between neighbouring points 𝛼𝑠𝑡𝑒𝑝. 

The next step is to find the index i of the nearest left 
neighbour of 𝛼𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, as shown in (8). 

   𝑖 = [ 
𝛼𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡−𝛼𝑠𝑡𝑎𝑟𝑡

𝛼𝑠𝑡𝑒𝑝
]                          (8) 

Both the left and right side corrections, associated with i 
and i+1 will be updated using the linear least squares fitting 
method, generating a slope and an intercept based on 𝛼𝑑𝑖𝑓𝑓 , 

𝛼𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 and a number of left and right neighbouring pairs 

of (𝛼, SACC(𝛼)). Thus, the associated left neighbour internal 
correction will be: 

               𝛼𝑑𝑖𝑓𝑓(𝑖) = 𝑚 ⋅ (𝛼𝑠𝑡𝑎𝑟𝑡 + 𝑖 ⋅ 𝛼𝑠𝑡𝑒𝑝) + 𝑛 ,           (9) 

where m and n are the slope and the intercept resulted from 
applying the least squares fitting method [6].  

Finally, from (5) and (6) we can observe that the obtained 
difference angle is corrupted by noise. In order to minimize 
the noise influence, the last step of updating the IACC for the 
given index i is based on an exponential moving average 
method [7], described in (10), using the filtering factor f: 

𝐼𝐴𝐶𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑖) =  𝐼𝐴𝐶𝐶𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠(𝑖) +     𝑓 ⋅ (𝛼𝑑𝑖𝑓𝑓(𝑖)  −
𝐼𝐴𝐶𝐶𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠(𝑖) )                                                              (10) 

B. Validation model 

After a number of N updates of the IACC have taken 

place, denoted as plausibility cycles, the next step before 

updating the SACC is to apply a smoothing process over the 

current IACC, resulting in a smoothed IACC. Our proposal 

of the smoothing mechanism is based on using a quality 

measure of the IACC updates of every supporting point as 

weights and the resulted smoothed correction for the 

supporting point k is calculated based on the neighboring 

corrections and their quality measures, as shown in (11): 

 

         𝑆𝐼𝐴𝐶𝐶(𝑘) =  
∑ 𝐼𝐴𝐶𝐶(𝑘)

1

𝜀𝑁𝑘

𝑘+2
𝑘−2

∑
1

𝜀𝑁𝑘

𝑘+2
𝑘−2

,                     (11) 

 

where SIACC (Smoothed IACC) is the resulting IACC after 

the smoothing process, N is the number of updates for the 

supporting point in the current update cycle and 𝜀𝑁𝑘  is the 

chosen quality measure of the updates. 

For the quality measure, we have chosen an exponential 

moving average based standard error, presented in (12): 

     𝜀𝑁𝑘 = 
√∑ (𝛼𝑑𝑖𝑓𝑓𝑗

(𝑘))

2
𝑁
𝑗=1 − (𝑁⋅𝐼𝐴𝐶𝐶(𝑘)2) 

𝑁2−𝑁
               (12) 

 

The new SIACC value for supporting point k will be 

added to the last SACC value. To avoid angular ambiguities 

introduced by the SACC, we propose recalculating the SACC 

neighbors, k-1, and k+1 using a simple linear regression. 

Finally, the new SACC value for supporting point k is:  

 

     𝑆𝐴𝐶𝐶(𝑘) =  
𝑆𝐴𝐶𝐶(𝑘−1)+𝑆𝐴𝐶𝐶(𝑘+1)

2
            (13) 

 

C. Key performance indicators 

During the lifetime of the vehicle, the driving scenarios 

are as diverse as the driving environment. However, the 

SACC behavior must at the same time be stable and robust, 

but it also must be accurate and easily adaptable for the whole 

lifetime of the sensor, while also considering the sensor aging 

and any possible scenarios where the cover or bumper might 

be hit. 

For this, we propose the usage of a global coefficient of 

variance that encapsulates the overall stability and robustness 

of the SACC. Firstly, we calculate the local variance based 

on the IACC latest updates, as shown in (14): 



 

        𝜎𝐼𝐴𝐶𝐶(𝑘)
2 =

∑ (𝛼𝑑𝑖𝑓𝑓𝑗
(𝑖))

2
𝑁
𝑗=1 − 

1

𝑁
(∑ 𝛼𝑑𝑖𝑓𝑓𝑗

(𝑖)𝑁
𝑗=1 )

2

𝑁−1
              (14) 

The overall variance coefficient is calculated using an 

exponential moving average filter of factor 𝑓𝜎2: 

 
𝜎𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2 = 𝜎𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
2 +    𝑓𝜎2 ⋅ (𝜎𝑛𝑒𝑤

2 − 𝜎𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
2)  (15)                                                      

The convergence of the SACC can be described in terms 
of the absolute value of all smoothed differences,  𝑆𝐼𝐴𝐶𝐶, 
between the measured azimuth and assumed references. The 
remaining offset, θ  is expressed in (16) based on an 
exponential moving average filter of factor 𝑓θ : 

θ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = θ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 +    𝑓θ ⋅ (θ𝑛𝑒𝑤 − θ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)            (16)                                 

Finally, a sense of SACC progress can be expressed as a 
function of  θ, as shown in (17): 

         𝜌𝑆𝐴𝐶𝐶 = {
θ𝑚𝑖𝑛

θ𝑐𝑢𝑟𝑟𝑒𝑛𝑡
⋅ 100  [%], θ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > θ𝑚𝑖𝑛

100%, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,       (17)  

where 𝜌 is the current SACC progress.  

IV.  NUMERICAL RESULTS 

The simulation results for the proposed method are 
presented in this section. These results are based on the 
methodology described in Section II along with the correction 
calculation method described in Section III. The results are 
based on real data from a test drive effectuated on a highway, 
in optimal driving and environmental conditions for both rear 
and front radar sensors. This data is used as input for our 
simulation environment. 

TABLE I.  ANGLE CORRECTION CURVE CALCULATION PARAMETERS  

Parameter Symbol Value 

Minimum vehicle velocity - 5 m/s 

Maximum vehicle yaw rate - 0.5 deg/s 

Number of road edge measurements 𝑁𝑟𝑒𝑓 35 

Number of road edge target updates 𝑀𝑟𝑒𝑓 35 

Maximum reference standard 
deviation 

- 1 m 

Target filter factor for EMA update f 0.5 

Number of plausibility cycles N 30 

Number of points used for least 
squared method 

- 9 

Maximum target distance from 
reference 

- 2 m 

Minimum target SNR - 15 dB 

Maximum error 1 deg 

Maximum standard deviation 1 deg 

EMA Variance coefficient 𝑓𝜎2 0.01 

EMA Remaining Angle Offset 
coefficient  

𝑓θ 0.01 

Remaining offset Angle for 100% 
progress 

θ𝑚𝑖𝑛 0.5 deg 

In Table I are presented the parameters used for enabling 
the angle correction curve calculation functionality and for the 
correction calculation. 

Fig. 3 illustrates the calculated SACC, represented with 
blue, for all sensors compared to their reference SACC values, 
represented with red. Fig. 4. shows the absolute error between 
the measured SACC and the reference SACC. The error is 
higher at the two extremities of the measured azimuth angle 
interval ([-34, 20] deg and [100-126] deg intervals), mainly 
due to the lack of suitable radar raw targets around edge of the 
sensor’s field of view. This is also enforced by the data shown 
in Fig. 5, where the histogram of updates is presented. 
Moreover, from Fig. 3 we can also observe that within the 
angular area of 80-100 deg the absolute error is very high 
compared to the rest of the interval. This is mainly due to the 
uncertainty of (5) around the angles close to 90 deg. 

 

 

Fig. 3. Comparison of the measured SACC against the reference SACC. 

Fig. 4. Absolute SACC error.  

Fig. 5. SACC Histogram. 



 

  

Fig. 6. SACC statistics. 

 

     In Fig. 6. are presented the statistics of the SACC, defined 
as the variance and the remaining offset angle as a function of 
radar cycles. It can be noted that the SACC variance rises in 
the beginning, then remains at a certain level, according to the 
environment and then will experience short term changes in 
value in case of changing the environment. The other SACC 
statistic, the remaining offset, is maximal at the start of the 
adaptation process and it will lessen over time to a certain 
minimal threshold, reaching a convergence point. 

 

      

Fig. 7. Overtaking objects scenario. 

Finally, in Fig. 7, we present a simulation of a specific 
scenario where different objects are performing overtaking 
maneuvers on adjacent lanes in the SACC angular intervals. 
The green lines represent the ideal trajectory followed by the 

center of an object created by the targets corrected by the 
reference SACC. The red lines are described as the maximum 
lateral position deviation of the center of the overtaking 
object.  

The meaning of these limits is that we can consider a radar 
lane assignment error of an object if more than half of the 
object width is detected on the wrong lane. In our scenario, a 
wrong assignment is considered if the sensors’ trajectories 
intersect with the limit trajectory in the given longitudinal 
interval. Considering a lane width of 3.5 m, we placed our 
vehicle on the middle of the central lane and the center of the 
overtaking objects on the middle of the adjacent lanes. That 
means that the lateral positions of the limits are at ± 1.75m and 
± 5.25m. We can observe from Fig. 7, that the trajectory of the 
objects generated from targets corrected by the proposed 
method, satisfy the requirements for a correct lane assignment 
in the adjacent lanes. However, we can observe that at high 
angles, the objects’ trajectories are close to the ± 5.25m limit.  

V. CONCLUSIONS 

     In this paper, a novel autocalibration method was 

introduced for performing a continuously adjustable and 

tunable azimuth automatic calibration process which can 

adapt any vehicle, can accurately compensate azimuth local 

offsets in a robust manner in the [-20,80] degrees interval and 

can provide statistical data that characterize the resulting 

angle correction curve. The method was proven on 

simulations based on real test drive data, demonstrating the 

effect on the system performance. 
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