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Abstract—This paper proposes a stationary target based 

online unsupervised calibration algorithm that can be applied 

on both 4D and 3D automotive radars for its horizontal 

alignment and misalignment detection. The calibration process 

requires no special EOL (End of Line) setup or stationary 

structures of reference. The method is based on the accurate 

determination of the own vehicle velocity and by using 

stationary targets.  The approach provides both a long-term 

stable azimuth mounting compensation value as well as a 

separate, more dynamic angle value that converges faster than 

the long-term value in case of small accidents. The proposed 

method considers the systematic errors resulted from the vehicle 

integration and bumper tolerances and delivers an accurate 

horizontal alignment correction by using filtering outlier 

rejection techniques. The performance is evaluated used real 

world data from drive tests executed with a 77 GHz series 

automotive radar, showing promising results. 
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I. INTRODUCTION  

For Automated Driving (AD) systems, one important 
challenge is the accurate environmental perception by the 
sensors that are encompassed by these systems. One such 
system is the automotive radar. The radar has active 
functionalities like LCA (Lane Change Assist), CTA (Cross 
Traffic Alert) or TA (Turn Assist), that require precise 
detection and ranging of the traffic and the environment due 
to the active monitoring and potential danger assessment in 
the scope of delivering warnings for the driver. An error in 
the sensor alignment can pose a serious risk in the radar 
target, object, and environment detection, decreasing the 
perception accuracy and overall performance of the system 
[1]. The main cause for the angular distortions is the 
mounting angle errors from the vehicle manufacturer’s plant. 
There are offline calibration methods, which take place in the 
customer's automotive production plant or in service (End Of 
Line Calibration).  

These involve placing the vehicle in a well-defined set-up 
together with various reference objects whose attributes such 
as position and angles of azimuth and elevation are well 
known, respecting strict tolerances [2]. These methods are 
disadvantageous both financially and in terms of the time 
required to perform the calibration of a vehicle, while also not 
ensuring the correct and stable compensation during the 
lifetime of the sensor, mainly caused by the aging of the 
electronics, vibrations due to driving, bumps in the road or 
even small accidents. Therefore, the online calibration 
methods are preferred: these methods are continuously 
tunable and adjustable and can adapt on any vehicle, while 
driving. The approach in [3] calculates the misalignment 

angle based on two pairs of range and azimuth angle 
continuous measures of the same stationary target. A 
disadvantage of this method the difficulty of tracking the 
same radar target over multiple measurement cycles, while 
also having the assumption that there is only a small 
misalignment.  The method proposed by Guo et al. [1] 
requires a straight stationary reference (guardrail) and 
performs a line fitting from the targets around it, obtaining a 
misalignment angle from the slope. This method works only 
in the presence of a stationary reference. Kellner et al. [4] 
make use of gyroscope and radar motion estimation 
algorithms to calculate the lateral velocity of the sensor in low 
yaw rate scenarios, in order to determine the misalignment 
angle. In [5], the method used calculates the joint azimuth-
elevation misalignment from the vehicle velocity, the side-
slip-angle, and its own target measurement. The 
misalignment angle is then calculated by feeding the data to 
a recursive filter or by batch processing it. Lastly, in [6] Bao 
et al. propose a procedure where the mounting angles for 
azimuth and elevation are calculated without knowing the 
radar position. 

The objective of the paper is to introduce an online 
unsupervised azimuth calibration algorithm for the 
automotive radar. The main contributions of the paper are: 

• A fully functional model that can adapt the radar 
system to the azimuth mounting error. 

• The usage of two correction values (robust and 
dynamic values) resulted from two different sets 
of 1D Kalman filtering parameters. The robust 
value will describe the stable, overall global 
compensation angle, while the dynamic value 
will be used to detect sudden changes, such as 
accidents. A hysteresis will be used to choose 
which value is used to correct the radar raw 
targets. 

• A method to accurately determine the horizontal 
alignment angle despite the influences of the 
vehicle integration and bumper over the azimuth 
angle of arrival, in case of a lack of existing 
correction table or inaccurate individual 
correction values [7], [8]. 

The remainder of paper is organized as follows. Section II 
presents the calibration procedure. Section III and IV 
elaborate on the types of filtering (robust vs dynamic) used 
and outlier rejection method in the case of bumper 
influences on the stationary targets. 
 



II. THE AUTOMATIC CALIBRATION MODEL 

Considering the scenario from Fig.1 the vehicle is driving 
straight (at a very low yaw rate), and thus, will not present 
lateral velocity. The algorithm will use only suitable 
stationary targets. The target suitability can be decided by 
factors such as relevant relative distance, angular interval in 
azimuth and in elevation (for 4D radars), signal-to-noise ratio 
and others. 
 

 
Fig. 1. Scenario for the estimation of the real target angle. 

 

For calculating the horizontal alignment angle, the 

following inputs are required: the vehicle velocity ����, the 

measured target velocity ���  and the measured azimuth angle 

of the target, ��. In the case of a straight driving scenario, the 
stationary targets would be seen as having the same 
longitudinal velocity as the ego vehicle, but with the opposite 

sign, meaning ��,
 =  −����. This can be rewritten as: ��� ≅  −���� ⋅  cos (�)         (1) 

where �  is the reference azimuth angle. We can easily 

calculate � from (1), in the following way: � =  arccos �− ��������         (2) 

The measured angle �� can be described as: �� =  � +  ! + "#         (3) 

where  ! is the horizontal angular mounting error and "# is 
white Gaussian noise. Therefore, the measured angle 
correction value for a valid target is: ∆�% =  − ! − "# = � − ��                     (4) 
For an accurate estimation, a filtering method needs to be 
applied due to the measurement noise and the low yaw rate 
values that still impact the estimation. In this paper, we 
propose the usage of a 1-D Kalman filtering method [9], 
where we consider predicting only the covariance, as shown 
in equations (5) to (9). 

                                 ∆�́' ()* = ∆�' (                                      (5) 

                                +,()* = +( + -                                         (6)      .( = /, 0/, 0)1                                            (7) 

                       ∆�' ( = ∆�́' ( + .( ⋅ (∆�% − ∆�́' ()                         (8) 

                                +( = (1 − .() ⋅ +,(                               (9) 

where  ∆� is the horizontal correction value, + is the estimate 
error covariance, K is the Kalman gain, Q is the process noise 
covariance, R is the measurement noise covariance, ´ 
represents the a priori state estimate at step k (without the 
symbol ´ it represents the a posteriori state estimate). 

III. PURPOSE-BASED CORRECTION FILTERING 

During the lifetime of the sensor, it is important to have a 
steady and stable calibration value that can provide an overall 
long-term electronic compensation of the sensor 

misalignment. To achieve a stable and accurate calibration 
value, the algorithm should use a slower adaption. In critical 
situations, like accidents, when the bumper is hit, thus 
creating a misalignment of the sensor, it is very important that 
the algorithm converges in a fast manner to the new 
compensation value. For this, a quicker, more dynamic 
adaption should be used, while expecting a relatively lower 
accuracy than the robust filtering method.  

In order to achieve the above-mentioned points, we 
propose to compute the robust and dynamic angle by using 
two different sets of Kalman filtering parameters Q and R, 
with a set of higher valued parameters for the dynamic angle 

correction ∆�3, and a lower valued set of parameters for the 

robust angle ∆��, respectively. 
The correction value ∆�4  that will be used for the 
misalignment detection and target correction is described in 
(10):  
    ∆�4 =  5∆�� , 67 8 < ℎ;<=∆�3 , 67 8 > ℎ;?
@AB�6CDE EFGFB DEBH, 67 8 ∈ Jℎ;<= , ℎ;?
  K (10) 

where 8 =  |∆�� − ∆�3|, ℎ;<=  and ℎ;?
   are the minimum 
and maximum required absolute differences for the hysteresis 
trigger. 

IV. SECTOR-BASED ANGLE CALIBRATION 

Automotive radar sensors are usually mounted behind 
bumpers, which can lead to performance degradation of the 
angle measurement due to properties like paint, coating, 
shape, and material. The angle measurements are affected by 
errors from multipath propagation, refraction, diffraction and 
reflections of the signal depending on the angle of the 
incident wave. In this paper, we will refer to these systematic 
distortions as local offsets.  

Considering the local offsets, the measured angle from (3) 
becomes: �� =  � +  ! +   MNM( �) + "#              (11) 

where  MNM( �) is the systematic individual error. 

In order to minimize the systematic error  MNM( �), a local 

correction ∆#OPO(�) must be applied to the measured angle 

and (4) becomes: 

                                   ∆�% =  � −  �Q                                    (12) 

where  �Q  =  � +  ! +  MNM( �) + ∆#OPO(�) + "#. 

In ideal situations,  MNM( �)  ≅ −∆#OPO(�) , cancelling each 

other. However, in non-ideal cases, if the local errors  MNM( �) 

are not fully compensated by ∆#OPO(�), the uncompensated 

local angular offsets will be incorporated inside the estimated 
horizontal correction. Our proposed method involves 
splitting the relevant azimuth angular interval in a number of 

N angular sectors and estimating ∆�4 for each angular sector 
individually, for every radar cycle k, as in (13): 

 ∆RS = J∆�4T ∆�4* … ∆�4VW*KX          (13) 
The sector i attributed to the measured correction value is 
calculated as follows: 

         6 = Y #W#OZ[�Z#OZ�\ ]                              (14) 

where �M^�_ =  ��=3 −   �M^?�^  is the sector angular interval, �M^?�^  and ��=3  are the minimum and maximum azimuth 
angles allowed for the target selection criteria. 

Stationary 
target 

Misaligned 
radar 



Ideally, the distribution of the measured correction value ∆�%  
should resemble a Gaussian distribution with the mean value 
equal to the true correction value. However, several angular 
sectors might be affected by either the systematic local offsets 
in case of not using any local correction measures, or the local 
corrections are not accurate enough, thus skewing the normal 
distribution. By using outlier rejection methods, we will 
remove the most affected angular sectors from the estimation 
of the correction angle. 
For the outlier rejection process, we compared the 
performance of three types of methods: median absolute 
deviation, standard deviation [10] and generalized extreme 
Studentized deviate (gesd) tests for outliers [11].  

V. NUMERICAL RESULTS 

In this section we present the simulation results for the 
proposed method. The algorithm is tested with a commercial 
millimeter wave automotive radar that has the following 
features: centre frequency of 76.5 GHz, azimuth and 
elevation angle field of view of ±80°, respectively ±10°, high 
resolution in distance, relative velocity and angle, ethernet 
communication interface. The results are based on real data 
from different test drives effectuated on a highway, in optimal 
driving and environmental conditions for a rear left radar 
sensor. This data is used as input for our simulation 
environment and the local offset errors caused by the bumper 
influence have been compensated. 

Fig. 2 and Fig. 3 illustrate the robust and dynamic 
horizontal alignment corrections along with the histograms of 
correction values, for a sensor that presents no azimuth 

mounting errors ( ! ≅ 0). Both filtering methods provide an 
estimation mean value centered around 0° (-0.034° for robust 
filtering vs -0.032° for dynamic filtering), while the dynamic 
filtering has a higher variance than the robust filtering method 
(0.016° for robust filtering vs 0.0289° for dynamic filtering). 

 

 
Fig. 2. Horizontal correction for 0° scenario. 

 
Fig. 3. Histograms of the correction values for 0° scenario (upper: robust vs 

lower: dynamic filtering). 

In the second misalignment scenario, starting from the 
initial simulation, after 8000 radar cycles we added an 
artificial misalignment offset of 6° for the purpose of 
simulating the effect of a possible accident that would hit the 
bumper in such way that the azimuth mounting angle of the 
sensor would be changed. Fig. 4 demonstrates the efficiency 
of the dynamic filtering compared to the robust filtering from 
the point of view of the time required to converge to the new 
misalignment correction. 

 

 
Fig. 4. Horizontal correction for 6° error scenario (second scenario). 

In the third scenario, we show the effect of the local 

offset errors  MNM( �). The radar sensor mounted behind the 

bumper is affected by uncompensated local offsets in a 
certain angular interval (55°-75°). Fig. 5 shows the ideal 
azimuth local correction curve for which the local offsets 
would not affect the estimation (first scenario), compared to 
the correction curve used in this scenario.  
 



 
Fig. 5. Comparison between the used versus ideal azimuth correction 

curves for the sensor used in the test drive (scenario 3 vs 1). 

Fig. 6 presents the resulting dynamic and robust 
horizontal corrections for the third scenario. As opposed to 
the first scenario (Fig. 2 and 3), the mean values are no longer 
centered around 0°, exhibiting a positive offset, due to the 
cumulated influences of the uncompensated local errors. 

 
Fig. 6. Horizontal correction for 0° scenario with suboptimal angle 

correction curve (scenario 3). 

Fig. 7 illustrates the histogram of the correction values 
for third scenario. Due to the impact of the uncompensated 
local errors, the histogram is now skewed to the right side. 
 

 
Fig. 7. Histograms of the correction values for 0° scenario (upper: robust vs 

lower: dynamic filtering, scenario 3). 

To minimize the influence of the local errors, the method 
implies splitting the relevant azimuth angular interval in N = 

5 angular sectors and estimating ∆�3 and ∆��  for each sector 
individually. In Fig. 8, the comparison between the 
misalignment correction values from Fig. 6 and the correction 
values calculated for each angular sector are presented. The 
values influenced by the local errors are present in sectors 3 
and 4. 

 
Fig. 8. Comparison of sector-based horizontal correction values. 

In order to determine the outlier sectors and best 
misalignment correction value, several outlier rejection 
methods were used. Fig. 9 presents the recalculated 
horizontal alignment correction values after the outlier 
rejection procedure for the following thresholds: 

• three scaled median absolute deviations (MAD) 
away from the median, 

• one standard deviation away from the mean, 

• detection threshold of 0.2, for the generalized 
extreme Studentized deviate test.  

The median based method exhibits the most stable and 
accurate results, while the standard deviation method was 
unable to reject the outlier correction values at all moments 
in time. 

 
Fig. 9. Comparison of resulted correction values after outlier rejection. 

TABLE I.  COMPARISON OF THE RESULTED CORRECTION VALUES 

FOR SCENARIO 3 

Correction Method Mean Value [°] Variance [°] 

Initial ∆��  0.323 0.048 

Initial ∆�3 0.303 0.078 

MAD Based ∆�� -0.034 0.008 

MAD Based ∆�3 -0.024 0.014 

 
Fig. 10 presents the differences between the initial robust 

correction values for scenario 3 and the median based robust 
correction value obtained after the outlier rejection process. 



The misalignment correction value based on the outlier 
rejection method provides an estimation mean value centered 
around 0, while the initial method has a more inaccurate mean 
value and a higher variance, as seen in Table I. 

 

 
Fig. 10. Comparison of correction values before and after outlier rejection 

(scenario 3). 

VI. CONCLUSIONS 

In this paper, an ego velocity based unsupervised online 
calibration for estimating the horizontal misalignment of an 
automotive radar has been introduced. The method is based 
on stationary targets and uses two automatic calibration 
values based on different sets of values for the process and 
measurement noise, in such way that one value is stable and 
accurate on long-term driving scenarios, while the other value 
provides a faster misalignment detection in case of accidents. 
The proposed method provides accurate results in scenarios 
where the sensor is not adapted to the vehicle integration and 
bumper tolerances, by separating the relevant angular interval 
in equal azimuth sectors and estimating a pair of robust and 
dynamic correction values for each sector. The final value is 
then chosen based on the resulting suitable sectors left after 
an outlier removal procedure takes place. 
The algorithm has been tested in a software in the loop (SiL) 
environment and shows promising results. Future work 

includes the extension of the method for a vertical alignment 
and misalignment detection. 
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